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Let iH be a frame, « an element of IH and T a finitary algebraic theory. In this paper we compare
the category SH(!H, T) of sheaves of T-algebras on IH with the category Sh(al, T) of sheaves of
T-algebras on a} (where ! is the initial segment {ﬁ|,8<a}). This comparison suggests the
definition of formal initial segments of the category Sh(H, T). For a large class of theories to be
called ‘integral’ (examples of which are sets, monoids, groups, rings, modules on a integral
domain, boolean algebras,...) the formal initial segments of Sh(iH, T) coincide with the usual
initial segments of H: this means that we are able to recover IH axiomatically from Sh(iH, T).

When IH is the initial frame {0, 1}, the frame of formal initial segments of Sh(iH, T) is the frame
of open subsets of a compact space Spec T, called the spectrum of the theory T. When T is the
theory of modules on some ring R, we recover in this way various well known notions of spectra
and their corresponding sheaf-representation of the ring.

Introduction

Throughout this paper, H denotes a frame (=local lattice) and T is a finitary
algebraic theory; Sh(H,T) and Pr(iH,T) denote the cateogry of sheaves and
presheaves of T-algebras on H. If @ is some element in H, a| = {f | B=<a} is the cor-
responding initial segment and Sh{al,T), Pr(al, T) the categories of sheaves and
presheaves of T-algebras on the frame el. Sh(H) and Pr(H) are the categories of
sheaves and presheaves of sets on H; F:Pr(H)—Pr(H,T) is the free-algebraic-
presheaf functor and a:Pr(H)—Sh(IH) the associated sheaf functor. In this way
aF : Sh(H)—Sh(H, T) is a left adjoint to the forgetful functor (cf. [1]).

In a topos, the subobjects of any fixed object form a Heyting algebra. In
Sh(iH, T), the subobjects of any fixed object which satisfy distributivity conditions
with respect to the intersection and union again form a Heyting algebra: we call
these the Heyting subobjects; they play an important role when comparing Sh(a!, T)
and Sh(H, T). This comparison leads us to define the formal initial segments of
Sh(H, T); these are the categories which satisfy axiomatically the basic properties of
Sh(er}, T) with respect to Sh(H, T) and they form canonically a frame .# containing
IH as a subframe.

We introduce the notion of an integral theory; examples are given by sets,
monoids, groups, rings, boolean algebras, modules on an integral domzin,... When
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T is an integral theory, the frames IH and .¥ coincide; the frame H is thus completely
characterized by its sheaves of T-algebras. When T is not an integral theory, we
exhibit some relations between Sh(iH, T) and Sh(.#, T).

Now fix IH to be the initial frame {0, 1}. In this case #, the frame of formal initial
segments, is the frame of open subsets of a compact space Spec T which depends
only on the theory T. This space Spec T is called the spectrum of the theory T. When
T is the theory of ...odules on a ring R, Spec T coincides with the spectrum defined
by Simmons (cf. [14]); When R is Von Neumann regular, SpecT is the Pierce
spectrum of the ring (cf. [12]); when R is a Gelfand ring, Spec T is its maximal
spectrum (cf. [2}, [3], [10]); in general, the formal initial segments correspond to the
pure ideals of the ring R (cf. [7], [14]).

Details of the proofs can be found in [4].

1. Basic properties of Sh(H,T)

If « is some element in H, we denote by h,:IH°®—Sets the corresponding
representable sheaf.

Proposition 1. The categories Pr(H, T) and Sh(H, T) are complete, cocomplete and
regular.

Proposition 2. The presheaves Fh, (aeH) form a set of finitely presentable
regular generators of Pr(H,T).

Proof. By [6] 1-7 and 1-10 and the fact that in Pr(H, T) colimits are computed
pointwise.

Proposition 3. The sheaves aFh, (aeH) form a set of regular generators of
Sh{:~, T).

Proof. For Sh(iH, T) is a localization of Pr(/H, T). On the other hand colimits are no
loriger computed pointwise in Sh(H,T) and therefore aFh, is not finitely
presentabile.

Propesition 4. Sh{"1, T) possesses a dense family of generators such that for each
object D of the family the canonical morphism 0— D is moaic.

Proof. By [6] 7-5, it suffices to consider the finite sums of sheaves aFh,
{xe -y,

Proposition 5. /n Pr(+,T) and Sh(r,T), intersection commutes with filtered
unions.



Recovering a frame from its sheaves of algebras 143
Proof. By [13] 18-3-7 and the exactness of the associated sheaf functor. O

Propeosition 6. Let (4,7 A);; be a filtered family of subobjects in Sh(X,T) and
(fi: A;>B);e a family of morphisms such that, for i, j in I, the following square
commutes:

ANA; —— 4,
J;

A F
There exists a unique morphism f: UA i =B extending the f;’s. Moreover, if each
fi is monic, the same holds for f.

Proof. Analogous to that of Proposition 5. 0

2. The frame of Heyting subobjects

In a topos, the intersection with a subobject commutes always with the union of
subobjects. For an algebraic category, this property is very rare: the main examples
are the two trivial subobjects (the subobject of constants and the whole object); it’s
however possible to find non trivial examples (see Section 7 - pure ideals of a ring).
In Pr(iH, T), many non trivial examples of such subobjects S A can be found by
choosing P(a) to be trivial for each a in H; passing to the associated sheaves, one
gets examples in Sh(iH, T). These last examples are clearly related to the structure
of IH and thus provide a first step to a characterization of IH from Sh(H, T).

Definition 7. Let C be a finitely complete and cocomplete regular category. A
subobject S»+ A4 in C is called a Heyting subobject if for any subobjects R, T of A
the following conditions are satisfied.

() SNRUT)Y=(SNRYU(SNT).

2) RNSUT)=(RNASYURNT).

(3) The square

SNRNT

RNT

sSNT (SNTYU(RNT)

is cocartesian.
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Proposition 8. Let S A, (S, A);c; be Heyting subobjects in Sh(H, T). For any
subobjects R A, T—A4, (R, A),; the following relations hold.
(i) SURNT)=SUR)N(SUT).
(i) RUSNT)=RUS)N(RUT).
(iii) There exists a subobject S= R of A such that

T<S=R iff TNS<R.

() SNU.e: RY=U.., (SNR)).

™) RN((U., SHUT) =, (RNSHURNT).

(vi) SNR is a Heyting subobject of R.
Proof. Replace | J,_, by the filtered union |J,,, where J runs through the finite
subsets of I; (iv) and (v) follow then from Proposition (5) and (i), (ii), (iii) from the
general theory of complete distributive lattices (cf. [18]); the proof of (vi) is quite
straightforward (using (i) and (ii)). [J

Theorem 9. For any object A in Sh(H,T), the Heyting subobjects of A are an
V A-sublattice and are a frame.

Proof. Let S—A, §'—A and (5, A),; be Heyting subobjects of A.
SNS’ satisfies (1) and (2) in Definition 7 (Proposition 8). To prove (3),
consider the cocartesian square with 7 replaced by TNS’. Then consider
(SNTYU(RNT) with its Heyting subobject given by S'N((SNTYURNT))=
SNS'NTYU(S'NTNAR).
Uié,S, satisfies (1) and (2) in Definition 7 (Proposition 8). To prove (3), con-
sider first S;, R and T as subobjects of A, then S;,(RUS;) and T, and so on,...;

*
-~

conclude by Proposition 6. ]

3. The frame of formal initial segments

For each a in iH, we prove that Sh(a!, T) is a localization of Sh(H, T) satisfying
various additional properties; some of them can be expressed in terms of Heyting
subobjects. Any localization of Sh(iH, T) which satisfies these properties is calied a
formal initial segment. These formal initial segments form a frame containing [H as

a subframe and contained itself as a subframe in the frame of Heyting subobjects
oi aFh,.

Theorem 10. Let o be some element in H.

(1) The restriction functor a*:Sh(H.T)—Sh(al,T) has a full and faithful left
adjoint a. and a full and faithful right adjoint 0.

(2) «. preserves and creates monomorphisms.

(3) If 0—A4 s monic in Sh(H,T), the canonical morphism a.a*4A—A is a
Heving subobject.
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Proof. Let A be some object in Sh(al, T) and f some element in IH. Define a, by
ax(A)(f)=A(aApB). Define a,(A) as the sheaf associated to the presheaf a’(A4)
given by

AP if f=<a,
0 if f£a,

Clearly a; - a* -1 and a4 is full and faithful; therefore @, is also full and faithful
(cf. [13] 16-8-9).

a, preserves and creates monomorphisms by construction and the exactness of
the associated sheaf functor.

a’a*A is a subobject of A in Pr(H, T) and thus so is x,a*4 in Sh(H, T). In each
component a’a*A(f) is a trivial subobject of A(pB); therefore a’a*A4 is a Heyting
subotject of A in Pr(iH, T). The properties of the associated sheaf functor imply that
a,a*A is a Heyting subobject of 4 in Sh(H,T). O

(A)(B) = [

Definition 11. Let C be a finitely complete and cocomplete regular category. A
formal initial segment a of C is a full subcategory a such that

(1) the canonical inclusion a, : a—C has a right adjoint a* which has itself a
right adjoint ay.

(2) If 0—A4 and S— A are monic in C and if A4 is an object in &, S is also in a.

(3) If 0—A is monic in C, the canonical morphism a,a*4—A is a Heyting
subobject.

Proposition 12. Let C be a finitely complete and cocomplete regular category and
a a forizal initial segment of C.

(1) If 0~ A is monic in C, a, preserves the monomorphisms with codomain A
in a.

(2) a: reflects monomorphisms.

(3) a« is full and faithful.

(4) I 0= A and S— A are monic in C, a\a*S=SNa,a*A as subobjects of A.

(5) a is saturated under isomorphisms.

Proof. (1) Factor a monomorphism in & through its image in C and use the exact-
ness of a*.

(2) a4 is full and faithful (cf. [13]).

(3) o, is full and faithful (cf. [13] 16-8-9).

(4) The canonical monomorphism a.a*S—AAaa*A has a right inverse
aa*(SNa,a*4>—S) and thus is an isomorphism.

(5) Condition 2 in Definition 11.

Theorem 13. The formal initial segments of Sh(iH,T) are a frame .».

Proof. The formal initial segments are ordered by inclusion of subcategories.
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Sh(H, T) is the greatest element and {0} with ax(0)=1 and «,(0)=0 is the smallest
element.

Let a, B be two formal initial segments of Sh(\H, T). Define their intersection aAf
as the full subcategory aN g, (@AB), is thus the canonical inclusion. Now the two
functors a.a*8:8* and B,B*x,a* are right exact and coincide on a dense sub-
category of Sh(H, T) (Proposition 4 and 12(4)); from [13] 17-2-7 and 17-2-8 one
deduces that these two functors are naturally isomorphic: this is (aAB)*. From that
a+a*B.f* and B«f*asa* are naturally isomorphic and equal to (@AS)«. It’s routine
to check that aAf is a formal initial segment.

Let (a;);c; be a family of formal initial segments of Sh(H, T), we need to define
V.., a;. We define first a functor G : Sh(iH, T)—Sh(H, T) by taking G(A4) to be the
colimits of the diagram

ayaf(A)

_

@;1;"(A)

for any indexes i, j. We define V., @; as the full subcategory of Sh(iH, T) spanned
by all the objects G(A4) and saturated for the isomorphisms. Let us prove that
V.., a, is a formal initial segment.

G factors through V.., ; into (V,c; ;)(V,c, @)*. Now for A in Sh(H,T) the
canonical morphism 6;:a;,a*A—>A factors through (Vi.; a)(V..,;a,)*A); this
gives rise to a morphism

0 (va) (Va)u-w.

el iel

(a;haj)(a;Aa)*(A)

Moreover for any i/ in /
\*
(ai)s(a,»)*< Vl a,-) ( Vl Q; ) = () (ap*

and from this one deduces that 6,4 has the universal property presenting (Vie;ad*
as a right adjoint to (V,, ;):.
Next one shows that the image of 6, is the union of the images of the (6,), and
from Propositions 5, 6 and 10 one deduces the required properties of (V,_, ;).
Finally, for any 4 in Sh(H, T) we define (V,., ;)x(4) as the limit of the diagram

(a,)*m,)*( Vv a,-> (4)
1€l !

(ai/\aj)*(ai/\aj)*( V, ai) (A4)

(u,)*(a/)*( Y a/) (A)”

el
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and we get the right adjoint to (V,., @)*.
In order to have a frame, all that remains is to prove the distributivity laws
between V and A.

It is sufficient to prove that if & and (8;);.; are formal initial segments of

Sh(H, T),
[om( v ﬂ:)]'[a/\( v /f,-)]*z- [v (a/\ﬂ.-)]'[ _V,(a/\ﬁ.-)] "

But these functors are right exact and so it suffices to prove the isomorphism on
a dense subcategory. By Proposition 4, this follows from the definition of Heyting
subobjects and formal initial segments. [

Proposition 14. Let »# be the frame of formal initial segments of Sh(H, T) and
Heyt(aFh,) the frame of Heyting subobjects of aFh,. There are irclusions of
Jrames

H ¢ # C Heyt(aFk,)

Proof. Consider the application #—Heyt(aFh,); a—a,a*(aFh,). It is injective by
Propositions 4 and 12(4); it is an inclusion of frames by construction of #. The
inclusion H ¢ # follows from Theorem 10. [

4. Integral theories and the characterization theorem

The characterization theorem we have in view gives a condition under which a
frame H is completely characterized by its category Sh(IH, T) of sheaves of algebras
for an algebraic theory T. The condition is on T; with this condition, the frame H
is nothing but the frame of formal initial segments of Sh(H,T). We give also a
counterexample to prove that the characterization theorem does not hold for an
arbitrary theory T.

Definition 15. A finitary algebraic theory T is calied integral if any non-constant
l-ary operation is an epimorphism in the category T.

Proposition 16. A finitary algebraic theory T is integral if and only if for any non-
constant element x of the free algebra F1 on one generator, the canonically induced
morphism x: F1—F1 is injective. []

Proposition 17. Let A be a ring. The theory of A modules is integral if and only
if the ring A is an integral domain. [

Proposition 16 justifies the terminology of Definition 15. The examples of
integral theories are numerous as Proposition 17 shows.
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Proposition 18. The following theories are integral: sets with or without base
point(s); sets on which a groups acts; monoids; abelian groups; rings with or without
unit, commutative or not; modules on an integral domain; vector spaces on a field;
boolean algebras.

Theorem 19 (the characterization theorem). Let T be an integral theory. Two
frames H and \H’ are isomorphic if and only if the corresponding categories Sh(H, T)
and Sh(iH, T’) of sheaves of T-algebras are equivalent.

Proof. We simply prove that if T is integral, IH is isomorphic to the frame # of
formal initial segments of Sh(H, T). By Proposition 14, it remains to show that each
formal initial segment a of Sh(iH, T) arises from an element § of IH. Again from Pro-
position 14 it suffices to prove that a,a*(aFh,) has the form aFhy.

By Proposition 14, let £ be the greatest element of H smaller than & in .#. For
any y € - denote by Sh, the separated presheaf of T-algebras universally associated
to h, and by P the intersection of Sh; and a,a*(aFh,) as subobjects of aFh,.
a.a*(@Fh,) is the sheaf universally associated to P and Shy is a subabject oft P.

If @,a*(aFh,) is not isomorphic to aFhy=aShg, there exists some y in H, y £,
such that P(y) # Shy(y). But Shy(y) = FO; so we can find x € P(y) which is not a con-
stant. Denote by (x) the sub-presheaf of T-algebras of P generated biy x. There is
a canonical surjection of presheaves Sh, —(x) which is an isomorphism because T
is integral. Therefore aa*(aSh,) is isomorphic to aSh, and thus y is smaller than
«: finally y<p, which is a contradiction. [

Finally we give a counterexample to the characterization theorem in the case of
a non-irtegral theory. Let N be the set of integers and .#(IN) the boolean ring of
subsets of ™. IN is isomorphic to N L1 N and thus there is an isomorphism of rings
()= (N LI N)= 2(N) x .2(N). Therefore we have an isomorphism between the
categories of modules (cf. [11])

.\1od ’("4) E }\40({ ,f(-\_') X MOd ,l(\‘,)

This shows that the categories of sheaves ot .”(IN)-modules on the spaces 1 and 2

are equivalent. Thus a frame cannot be characterized by its sheaves of #(N)-
modules.

5. Sheaves on the frame of formal initial segments

In general, the frame .7 of formal initial segments of Sh(iH, T) is not isomorphic

to --. In this section, we compare the categories Sh(IH, T) and Sh(.#, T). They are
clearly related by the restriction functor

R :Sh(# T)-Sh(+,T).



Recovering a frame from its sheaves of algebras 149
Proposition 20. With the notations above, R has a left exact left adjoint T.

Proof. For A in Sh(H,T), define TA as the sheaf associated to the presheaf 7’4
given by
T'A(a) = li_rp A(f).
Bza

BeH

T is left exact because in Sets’ finite limits commute with filtered colimits (cf.
[13p. O

We shall now define another functor S: Sh(H, T)—Sh(#; T) which is not adjoint
to R but has the interesting property that Ro S=id. If 4 is some object in Sh(IH, T)
and a € ¥, we define

SA(a) = (axa*A)(1).
Proposition 21. With the notations above, SA becomes a sheaf and S extends into

a faithful and limit-preserving functor S:Sh(H,T)—=Sh(#,T) such that
RoS=id. O

Proposition 22. S(aFh,) is @ monoid in the topos Sh(.#) of sheaves on *.

Proof. For any « in .¥,
S(aFh,)(e)=Sh(al, T)(@*aFh,, a*aFh,).

and the structure of monoid is given by composition. [

Proposition 23. For any sheaf A € Sh(H, T), the sheaf SA is provided with an action
S(aFh,)x SA—SA
of the monoid S(aFh,).

Proof. The action is again given by composition. [J

6. The spectrum of an algebraic theory

The frame .# of formal initial segments of Sh(iH, T) depends on IH and on T. Now
if we fix H to be the initial frame {0, 1}, we get a frame .» which depends only on
T and which can be non-trivial if T is not integral. In this case we show that .7 is
in fact the algebra of open subsets of some compact space X which we call the
spectrum of the theory T; examples are given in the next paragraph. Moreover, the
functor S of Section 5 presents any T-algebra as the algebra of global sections of
a sheaf of T-algebras on the spectrum of T.



Definition 24. A T-ideal is a subalgebra of the free algebra F1 on a single generator
Definition 25. A T-ideal is called pure if it is of the form a,a*(F1) for some

Definition 26. A pure T-ideal J is called purely prime if it is proper and if for any
pure T-ideals 7,, I,

P 4 T - T . T ) 4
iiNnfhLcJ = [[CJor LCJ
Definition 27. A purc T-ideal / is called purely maximal if it is maximal among the
e amanrE saIrs T_;Aanlc
proper puic s -iacais.
Propesition 28. The pure T-ideals form a subframe #' of the lattice of subalgebras
of F

Proof. By Theorem 13 and Proposition 14. ]

Proposition 29. Any purely maximal T-ideal is purely prime. []

Proposition 30. Any proper pure T-ideal is contained in a purely maximal T-ideal.
Proof. By Zorn’s lemma. ]

Proposition 31. Ler I be a pure T-ideal and ae F1\ 1. There exists a purely prime
ideal J such that 1CJ and a¢ J.

Proof. By Zorn’s lemma and Proposition 28. [

define a map
(i —-».ﬁ(SppT)

by (y={J|Je S, (T); IZJ}.

Proposition 33. 7 is an injection of frames. (]
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Proposition 34. The subsets O(I) of S,,(T), when I runs through ¥, form a
topology on S,,(T).

Proof. By Proposition 33. [J

Definition 35. The (purely prime) spectrum of an algebraic theory T is the set
S,p(T) provided with the topology arising from Proposition 34,

Spp(T) is clearly the space universally associated to the frame of pure T-ideals.
But we have proved more: the frame of pure T-ideals is exactly the frame of open
subsets of S,,(T). (This is a particular case of Buchi’s classical resuit).

Proposition 36. The (purely prime) spectrum of an algebricc theory T is a compact
topological space.

Proof. If (/;)ick is a family of pure T-ideals such that UkE x Ix=F1, the canonical
generator of F1 can be expressed as an algebraic combinaticn of elements of a
finite number of elements choosen in a finite number of I ,...,I; . Therefore
Fi=. . O

Proposition 37. Let S be the functor described in Section 5. For any T-algebra A,
SA is a sheaf of T-algebras on S,,,(T) whose algebra of global sections is exactly A.

Proof. By Proposition 21 and the fact that in the particular context of this
paragraph the functor R of Section 5 is exactly the global sections functor. [

7. Applications to the theory of rings

In this paragraph we consider the theory T of left R-modules where R is an
arbitrary ring with a unit. A T-ideal is just an ordinary left ideal of R. We exhibit
the form of the pure T-ideals and get what is called in the literature ‘pure ideals’
(cf. [2], [3], [5], [10]) or ‘still ideals’ (cf. [14]). This gives an easy description of the
purely prime spectrum of T which we simply call the purely prime spectrum of the
ring R. This spectrum coincides with the one described by Simmons (cf. [14]) in the
case of a general ring, with Pierce’s spectrum (cf. [12]) in the case of a commutative
von Neumann regular ring, with the spectrum described by Bkouche and Mulvey
(cf. [2], [3], [10]) in the case of a commutative Gelfand ring. Moreover Propositions
21, 22, 23, 37 provide a sheaf representation of the ring R and of any R-module;
this representation is again the one described by Simmons, Pierce, Bkouche, Mulvey
in the cases we have already mentioned. We prove that the rings of local sections
of this representation are exactly the rings of endomorphisms of the pure ideals of
R; this gives an easy and unified sheaf description of the various corresponding
‘espaces étalés’.
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In this section, we make explicit the relation between the formal initial segments
of the category of R-modules and the pure ideals of R. The subsequent results on
the representation of rings are simply mentioned; they will be the object of a further
publication on ring theory.

Proposition 38. Ler a be a formal initial segment of the category Modg of !oft
R-modules. if I =a:a*R, a is the full subcatzgory of those R-modules M such that
IM =M and a*M = IM.

Proof. a.a* preserves colimits and each R-module can be expressed as a colimit of
a diagram build from the single object R. [

Proposition 39. Let a be a formal initial segment of Modg and I=a,a*R. I is a
pure ideal, i.e. a two-sided such that

Viel Jcel ¢i=i.

Proof. If J is any left ideal of R,
U=aa*J=a:a*RNJ=INJ

by Propositions 12(4) and 38. In particular JR=17 and I is a two-sided ideal.
Now consider ie 1. The following equalities hold:

Kiy =Ny =),

which show the existence of the required ¢. [

In order to prove the converse of Proposition 39, we recall some characterizations
of pure ideals.

Proposition 40. The following conditions are equivalent for a two-sided ideal I of R
(1) 1 is a pure ideal.
(2) Viel eel ci=i.
(3) Vi,....i,el Jeel such that Vk €i, =i,.
(4) For any left R-module M, I M= IM.
(5) R/I'is a flar right R-module.

Proof. See [14].

Theorem 41. There is an isomorphism between the frame of pure ideals of the ring
R and the frame of formal initial segments of rthe category Modg.

Proof. It remains to be shown that each pure ideal / has the form a,a*R for
some formal initial segment a of the category Modg. Choose « to be the full sub-
category of these modules M such that IM=IM=M; a*M=I®M and
u . N=Mody(I;N). T

—
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We denote by S,, R the purely prime spectrum of R, i.e. the purely prime spec-
trum of the theory of left R-modules. Its frame #(S,,,R) is thus exactly th: frame
of pure ideals of R.

Proposition 42. The application 0(S;, R)—*Rings which associates to the pure ideal
I the ring Endg(I) of R-endomorphisms of I extends into a sheaf of rings.

Proof. By Propositions 21, 22, 23 and Theorem 41 which show that if « is the
formal initial segment associated to I, ax(I)=Endg(I). O

If R is a commutative Von Neumann regular ring, S,,(R) is the spectrum of R
described by Pierce in [12] and proposition 42 gives the sheaf presentation of the
‘espace étalé’ described by Pierce. More generally, if R is commutative Gelfand ring
(cf. [2], [3], [10]), Spp R is the maximal spectrum of R and Proposition 42 gives the
sheaf presentation of the ‘espaces étalés’ described by Grothendieck, Bkouche and
Mulvey.

Finally we introduce the notion of a pure ring; the relations with Gelfand rings
will be studied in a further publication as well as the fundamental properties, of pure
rings.

Definition 43. Let a < f be two elements in a lattice with greatest element, « is called
dense in g if for any y

Bvy=1 = avy=1.

Definition 44. A ring R with a unit is called pure if for any ideal / of R there is
a pure ideal J which is dense in 7 (in the sense of Definition 43).

Theorem 45. Let R be a commutative pure ring. The purely prime spectrum of R
is a compact Hausdorff space and the stalks of the sheaf representation of R given
by Proposition 42 are local rings. [l
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